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Abstract19

We analyze the output of a regional ocean model that comprises the North Atlantic and20

the Arctic Ocean for the period 1975-2021. We focus on the flow through the cross-sections21

closing the Nordic Sea basin. The simulated flow at Barents Sea Opening (BSO) shows22

a clear positive trend. To understand the origin of this trend, we reconstruct the BSO23

flow based on wind time series over the Nordic Seas using Deep Learning. To explore po-24

tential links between the results from this reconstruction and the major atmospheric modes,25

we perform a suite of idealized experiments where the ocean model is forced with wind26

field anomalies that refer to known changes in the leading modes of atmospheric circu-27

lation over the North Atlantic and Arctic Oceans. Known changes in the major atmo-28

spheric wind patterns over the North Atlantic have a weak impact on the simulated BSO29

flow, and the sign is not consistent with the overall trend of the full simulation. The lat-30

ter holds as well for the known temporal changes in the intensity of the Arctic Dipole31

mode. The weak temporal changes in the Arctic Oscillation are consistent with the trend32

in the BSO flow but could not explain its amplitude. Ultimately, we could not establish33

a clear link between the BSO flow trend and changes in the major atmospheric modes.34

We conclude that the atmospheric pattern responsible for the BSO flow trend, does not35

project directly on the leading modes of atmospheric variability over the North Atlantic36

and the Arctic.37

Plain Language Summary38

The Barents Sea Opening is an important gate between the Nordic Seas, that trans-39

ports heat and salt towards the Arctic Ocean. The analysis of an ocean model shows that40

the simulated volume transport at the Barents Sea Opening increases for the period 1975-41

2021. Here, we set out to understand the origin of this trend. Guided by artificial intel-42

ligence we find a link between the trend and wind patterns over the Nordic Seas. In sub-43

sequent analyses we test for the effects of the most dominant atmospheric patterns over44

the North Atlantic and the Arctic. Our results suggest that the changes of the most dom-45

inant patterns fail to explain the trend in transports through the Barents Sea opening.46

We conclude that the trend is, rather, associated to more complex and specific atmospheric47

conditions.48

1 Introduction49

The Arctic Ocean is among the most vulnerable regions of the world that is strongly50

affected by climate change, e.g. by declining sea ice and glaciers. Part of the heat ex-51

change between the sub-Arctic and Arctic occurs through the transport of relatively warm52

and saline Atlantic waters northward through the Nordic and Barents Seas to the Arc-53

tic Ocean. The Atlantic Water enters the Polar Basin through two main gateways: (1)54

through the Fram Strait between Greenland and the Svalbard archipelago and, (2) through55

the Barents Sea between mainland Norway and Svalbard. To-date, increased heat trans-56

port, carried by the Atlantic Water flow through the Barents Sea, is already causing pro-57

found changes to the Barents Sea marine environment (Lind et al., 2018), sea-ice cover58

(Onarheim et al., 2015; Yang et al., 2016) and marine ecosystem (Fossheim et al., 2015).59

As such, the Barents Sea appears to be an essential passage way for the transport of heat,60

both for the atmosphere and the ocean (Smedsrud et al., 2013). Since changes that oc-61

cur in the Barents Sea are eventually also reflected in the Arctic Ocean, it is important62

to quantify and fully understand the different pathways of waters, the drivers behind them63

and their associated characteristics.64

The exchanges through the southwestern entrance to the Barents Sea consists of65

a predominantly eastward flow in the southern and central parts (i.e. an inflow to the66

Barents Sea from the Nordic Seas) (R. Ingvaldsen et al., 2002; Skagseth et al., 2011) and67

a predominantly westward flow in the northernmost, deeper part (i.e. an outflow from68
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the Barents Sea to the Nordic Seas) (Skagseth, 2008). The inflow into the southern and69

central Barents Sea Opening (BSO hereafter) is mainly barotropic (R. B. Ingvaldsen et70

al., 2004) and has been shown to be sensitive to local atmospheric forcing (R. Ingvald-71

sen, 2005). The outflow out of the northern part of the BSO is dominated by a baroclinic72

component (Blindheim, 1989) from dense water formation due to sea-ice formation in73

western parts of the Barents Sea (Blindheim, 1989; Sarynina, 1969; Årthun et al., 2011),74

but has also been shown to be sensitive to atmospheric forcing with intermittent rever-75

sals (Lien et al., 2013).76

From a barotropic viewpoint, the cause of temporal changes and trends in the At-77

lantic Water flow through the Barents Sea may be simplified down to two hypotheses78

based on hydraulic principles: either changes in upstream conditions push water into the79

Barents Sea, or changes in downstream conditions pull water into the Barents Sea (or80

both). Upstream changes in the Atlantic Water flow can be caused by processes in the81

North Atlantic that cause increased inflow to the Nordic Seas through the gateways be-82

tween Scotland and Iceland (Figure 1), or wind-driven changes to the circulation within83

the Nordic Seas. Changes in the downstream conditions include wind-driven changes to84

the inflow at the southwestern entrance to the Barents Sea (R. B. Ingvaldsen et al., 2004;85

Skagseth et al., 2011; Lien et al., 2013, 2017) as well as changes in dense water forma-86

tion within the Barents Sea affecting the strongly baroclinic outflow to the northeast to-87

ward the Polar Basin (Midttun, 1985; Schauer et al., 2002; Dmitrenko et al., 2015). From88

a more general point of view, the gates towards the Arctic Ocean and the Nordic Sea89

basin are interconnected, and any change in a flow of a gate drives a change in another,90

but the notion of causality is unclear on which gate drives which (de Boer et al., 2018):91

such a notion is linked to high frequency signal as barotropic waves may travel from one92

gate to another in a few hours or less.93

It has been postulated that changes in the downstream conditions may also cause94

feedback loops that will tend to further strengthen the response in the Atlantic Water95

inflow to the Barents Sea (Ådlandsvik & Loeng, 1991; Bengtsson et al., 2004). Two feed-96

back loops, one atmospheric and one oceanic, were investigated by Smedsrud et al. (2013).97

They found that increased dense water formation that increases the baroclinic flow from98

the Barents Sea to the Polar Basin also tends to increase the inflow to the Barents Sea99

in the southwest. However, the other feedback loop, where reduced sea-ice cover from100

increased Atlantic Water inflow causes increased ocean-to-atmosphere heat fluxes and101

subsequently increased cyclonic circulation in the atmosphere that favors increased in-102

flow in the southwest, was not substantiated.103

Polyakov et al. (2023) related recently, in an empirical study, the BSO flow trend, to one104

of the leading atmospheric modes over the Arctic Ocean, the Arctic Dipole (AD). In con-105

trast, Hilmer and Jung (2000) refer to circulation changes in the Nordic Seas due to changes106

in the centers of action in the North Atlantic Oscillation.107

There is, however, no consensus yet on the drivers of the flow trend at BSO. In the108

present study, we add to the ongoing discussion on the origin of the flow trend. Since109

the BSO flow in general has been shown to be sensitive to wind patterns over the Nordic110

Seas (Muilwijk et al., 2019; Chafik et al., 2015), we hypothesize that the flow trend at111

BSO is linked with a change in wind patterns over the Nordic Seas. Such a change is no-112

ticed by Herbaut et al. (2017) for example, although their findings conclude to a weak-113

ening of the cyclonic circulation in the Nordic Seas, which according to Muilwijk et al.114

(2019) should also weaken the flow towards the Barents Sea at BSO, and can therefore115

not explain the BSO flow trend. To explore our hypothesis, we utilize results from an116

ocean general circulation model for the period 1975-2021. More specifically, we explore117

links between the simulated trend in the Atlantic Water flow through BSO and its drivers118

using deep learning (DL hereafter). Technically, we use output from our geophysical fluid119

dynamic model as inputs to a deep-learning model. The approach sets out to find a set120

of features (such as atmospheric times series) that yield explanatory power in terms of121
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reproducing the flow through BSO. The application of Deep learning is embedded in a122

range of respective recent oceanographic advances, including data assimilation, improve-123

ments of hydrodynamic models, forecasting, and gap filling (Brajard et al., 2020; Rajabi-124

Kiasari et al., 2023; Jahanmard et al., 2023; Dietze & Löptien, 2021).125

In Jahanmard et al. (2023) a temporal causal convolutional network was employed126

to predict ocean modelling errors given particular input variables. This approach basi-127

cally examines the frequency contents of ocean modelling errors and searches for causal128

relationships between ocean model errors and input variables, with the requirement that129

the DL model must generalize its solution across different unseen sets. The advantage130

of this approach is the distinct identification of relevant input variables and their char-131

acteristics. Here, we will use a similar approach (see Section 3) to analyze the model out-132

puts and relate it to specific wind derived time series (chosen based on expert knowledge).133

The aim is to perform a non-linear Granger causality test (Gogina & Zettler, 1999; Diebold,134

2007) for determining whether the simulated BSO flow and its trend can be successfully135

reconstructed by using the wind time series only. In a second step, we attempt to iden-136

tify the most influential time series by feature selection. Our specific DL approach ad-137

ditionally allows us to determine the memory of the system by using so called causal con-138

volutions.139

The DL experiments are complemented with sensitivity experiments with our ocean model140

to explore the role of wind changes that refer to known changes in the dominant atmo-141

spheric modes over the Arctic.142

The paper is organized as follows: we start with a description of our physical ocean mod-143

elling experiment in Section 2. In section 3, we present our DL approach to reconstruct144

the BSO flow and respective physical implications. In Section 4, we employ the results145

of the DL-based model experiments, to design a set of sensitivity experiments with the146

prognostic general ocean circulation model targeted to identify the atmospheric drivers147

behind the flow trend at BSO. Section 5 discusses our findings and concludes this arti-148

cle.149

a) b)

Denmark Strait

Iceland−Faroe

Faroe−Shetland

Barents Sea Opening

Lofoten Basin

Shetland−Norway

Fram Strait

Figure 1. a) Domain and bathymetry (in m) of the Nemo-NAA10km model configuration,

the white square shows the box covering the Nordic Seas b) The Nordic Sea box, with its 6

gates, Barents Sea Opening (BSO hereafter), Fram Strait (Fram hereafter), Denmark Strait

(DS hereafter), Iceland-Faroe ridge (IF hereafter), Faroe-Shetland Channel (FS hereafter) and

Shetland-Norway section (SN hereafter). The direction of the arrows shows the direction of the

mean flow at each gate.
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2 General Ocean Circulation Model, Transport Trends & Dataset De-150

scription151

We use a long term simulation of the Nemo-NAA10km regional ocean model (Hordoir152

et al., 2022) for the period 1975-2021. Nemo-NAA10km is a regional model used to study153

ocean processes, and changes in ocean processes in the North Atlantic and Arctic Oceans.154

Nemo-NAA10km operates in forced mode (as opposed to ocean-atmosphere coupling).155

The interaction with atmospheric data is parameterized through bulk formulas (Large156

& Yeager, 2004). The wind stress received by the ocean is calculated as a function of the157

square of (prescribed) winds in 10m height. The effects of surface currents on wind stresses158

are neglected. The latter facilitates the interpretation of the effect of wind-patterns on159

circulation because there is no feedback from potentially chaotic differences in the cir-160

culation.161

Within the computational domain of Nemo-NAA10km that covers the Arctic & North162

Atlantic Oceans (Figure 1a), we define a box that covers the Nordic Seas (Figure 1b),163

and for which each of the 6 gates to the Nordic Seas is described.164
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Figure 2. Low passed filtered net flow (in Sv) at the 6 different gates of Figure 1 for the time

period 1975-2021, the figures show the annual mean signal computed with a moving average,

and the linear trend for the entire time period (red line). All fluxes have a positive mean value,

but their contribution to the budget of the Nordic Sea box is indicated hereafter with a (+) or

(-) sign. a) BSO (-), linear trend of +0.15 Sv per decade b) IF (+), linear trend of +0.14 Sv per

decade c) DS (-), linear trend of -0.11 Sv per decade d) Fram (+), linear trend of -0.15 Sv per

decade e) FS (+), linear trend of +0.03 Sv per decade f) SN (+), linear trend of +0.01 Sv per

decade.

We focus on the barotropic variability within the Nordic Seas box defined in Fig-165

ure 1. We compute the barotropic volume flux through each of the gates for the period166

1975-2021, and the computation is done hourly. There is an obvious trend of net trans-167

port at BSO leaving the Nordic Sea box. The Nordic Sea box budget is mostly compen-168

sated by a stronger input to the Nordic Sea box at the IF ridge, and a decreasing south-169

ward trend at DS (Figure 2). Additionally, the southward flow at Fram declines. These170

calculations suggest a change in the transport in the Nordic Sea. This is also reflected171

in changes of the barotropic circulation for two different periods (Figure 3), which shows172

also that the flow along the Norwegian coast actually becomes less. Along the coast of173

Greenland, the southward flow intensifies, but the northward inflow at DS becomes higher,174

resulting in a weaker net southward flow. The fate of the increasing flow at BSO is not175

investigated in the present article. It is possible that the flux through Bering Strait, or176

through the Canadian Archipelago is modified. In the latest case, the Southward flow177

at Davis Strait is estimated to be 2.6 Sv (Cuny et al., 2005), which is of the same or-178
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der of magnitude as that of the BSO. The flow through this strait could therefore increase179

by the same amount as the BSO flux.180

This study sets out to link trends in transports to wind forcing. We start with em-181

ploying DL to explore statistical relationships. In a subsequent step (4.2) we go back to182

the prognostic general ocean circulation model in order to test the results and hypoth-183

esis suggested by the results of the Deep Learning.184

The data supplied to the DL pipeline consists of several wind features for the en-185

tire or a sub-section only of the area of the Nordic Sea domain (Figure 1). These wind186

features are the mean zonal wind stress τx, the meridional wind stress τy, and the ver-187

tically integrated Sverdrup transport V in m2 s−1 (Gill, 1982):188

V =
1

βρ0

(
∂τy
∂x

− ∂τx
∂y

)
(1)

in which189

β =
2ωcos(ϕ)

R
(2)

where ω = 7.2110−5 s−1 is the earth rotation pulsation, ϕ is the latitude, and R190

is the earth radius. It is important to note that this Sverdrup transport is a theoreti-191

cal equation which only permits to isolate a single process that must be reproduced by192

Nemo-NAA10km. The spatially averaged values of τx, τy and V are computed for sev-193

eral sub-areas of the Nordic Sea box. In total, these areas comprise the entire Nordic Sea194

box itself, the 500m isobath along the Norwegian coast (i.e.: the pathway of the Nor-195

wegian current transporting Atlantic Water towards the BSO), the Lofoten Basin, FS,196

DS, IF, Fram, SN, and BSO itself (Figure 4). The 500m isobath is transformed into an197

area by considering all the model grid cells with a depth of 500m ± 10m.198

The features provided for the reconstruction of the BSO flow at a given hour, are199

either from the same hour, or from previous hours. It is important to notice that the ef-200

fect of τx & τy features on ocean circulation have a different timescale than the Sverdrup201

transport V . The reason is that, implicitly, a steady state assumption of different phys-202

ical processes (each of which with its own dynamics) is made: τx & τy can be related with203

the Ekman transport in the ocean (Gill, 1982), for time scales t ≫ 1
f , in which f is the204

local Coriolis parameter. For the Nordic Seas area, 1
f it is approximately 2 to 3 hours.205

The timescale above which a steady state can be considered when it comes to the Sver-206

drup transport V is different, and is related with the size of the basin (Willebrand et al.,207

1980). This timescale T can be computed as:208

T =
L

β

[
1

L2
+

f2

gH

]
(3)

in which L is a scale of the width of the basin, H is a scale of the depth of the basin,209

g = 9.8m2s−1. Applied to the Nordic Seas, we compute T to be equal to 2 to 3 days,210

which means that a timescale much larger than that of the basin timescale is of the or-211

der of a few weeks. Computing V will therefore require considering time scales of a larger212

amplitude than T (Willebrand et al., 1980). Results from the DL model will show in the213

present article, that the reconstruction of the long term trend at BSO requires a learn-214

ing process with a data time slot that corresponds to such time scales.215
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c)b) d)

a)

Figure 3. a) From Chafik et al. (2015), Map of the Nordic Seas including the bathymetry

(shading) and a schematic representation of the large-scale pathways of Atlantic water in the

northern North Atlantic and the Nordic Seas. Abbreviations in black denote current systems,

and white denote regions. The focus of the present study is the variability of the branch entering

the Barents Sea at BSO. Subfigures b,c and d show current patterns extracted from the Nemo-

NAA10km numerical configuration (Hordoir et al., 2022). (b) Mean barotropic currents in m s−1

for the period 1992-2006 c) Difference between the periods (2007-2021 - 1992-2006) d) Difference

of transport in m2 s−1 at BSO, between the periods (2007-2021 - 1992-2006)

–7–



manuscript submitted to JGR: Oceans

Denmark Strait

Iceland Faroe

Faroe Shetland

Shetland Norway

All Nordic Seas

500m isobath

Lofoten

BSO

Fram

Figure 4. Boxes over which we compute mean hourly values of τx, τy and V , that are pro-

vided as input to our DL model. The dotted-dashed line shows the 500m isobath along the

Norwegian coast.

3 Deep Learning Method216

In this section, we present a reconstruction of the temporal evolution of the BSO217

flow based on local timeseries of surface winds using a multivariate deep neural network.218

Guided by expert knowledge we find a suite of local wind time series (cf. Figure 4) that219

suffice to reconstruct the BSO flow. The DL model architecture employed is a tempo-220

ral causal convolutional network. In our benchmarking, we observed that the final ar-221

chitecture exhibits a smaller generalization error and demonstrates better performance222

in capturing both high- and low-frequency variations than test experiments described223

below. This architecture is capable of establishing complex relationships between the past224

temporal evolution of the wind derived time series (as a receptive field RF ) and the sim-225

ulated BSO flow while preventing information leakage from future to past. How many226

past information are used can be adjusted as the network uses causal convolutions which227

are just convolutions that make sure that the prediction at time t only depends on past228

events t - n, where n is the length of RF . In a nutshell, we can explore whether the past229

evolution of the wind time series is useful to forecast the BSO flux variations and its trend230

(non-linear Granger causality test) and additionally determine the memory of the sys-231

tem (by varying RF ). Ultimate conclusions are then drawn by combining the DL results232

with physical considerations. Details on the DL model architecture are described in Ap-233

pendix A.234

The ultimate network is based on expert knowledge combined with a couple of DL235

experiments. Specifically, we tested different subsets of input variables to explain the model’s236

outcome (following a similar approach as J. Chen et al. (2018)). For instance, we included237

flows from other gates (see Figure 1b) into the models inputs. These results, however,238

were inconclusive and did not improve the quality of the reconstruction. In this case, phys-239

ical constrains limit the RF to 2 or 3 hours (which is bouncing time occurs at the speed240

of barotropic waves). An event that happened at other gates must precede an event in241

the BSO gate to be considered in our DL experiments. Therefore, if we want to consider242

the flows, the RF had to be limited to a few hours. Our experiment demonstrated that243

including these flows did not improve the quality of the reconstruction. Excluding the244

flows of other gates and expanding the RF time, the model strongly improved in pre-245

dicting the trend. Additional experiments revealed that an hourly resolution of the in-246

put data results in an improved model performance compared to a daily resolution. Our247
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final DL model achieves a correlation R2 of 0.97, and a reproduction of the trend with248

a trend ratio TR of 0.92 in predicting the BSO flow.249

To determine the memory of the system, Figure 5 shows the evolution of TR and250

R2 as a function of RF . This figure indicates that using three weeks of historical wind-251

derived time series allows for retrieving the BSO trend. Choosing an RF greater than252

three weeks does not impact the model’s performance in reconstructing the BSO trend.253

 0.1  0.7  1.3  2.7  5.3 10.7 21.3 42.7

Receptive Field (Day)

0

0.2

0.4

0.6

0.8

1
R

2
 a

n
d
 T

R

R
2
 (Train set)

R
2
 (Test set)

Trend ratio (TR)

Figure 5. Evolution of the BSO trend ratio (TR) and model performance (R2) as functions of

the receptive field (RF ).

4 Synthesis254

4.1 Deep Learning Results255

For the hourly BSO flow reconstruction we use hourly wind indexes representative256

of areas as indicated in Figure 4 backlogged up to three weeks. By combining expert knowl-257

edge with trial-and-error we find that in order to reconstruct the flow: (1) All wind data258

backlogged as far as 21 days and, occasionally, even as far back as 30 days is required.259

(2) Daily resolution is insufficient, as it fails to capture the full amplitude of the trend260

in BSO flow (Figure 2). Hence, we use hourly wind data and then reconstruct hourly261

BSO flow. Through probing through various input combinations to our deep learning262

framework in order to reconstruct the BSO flow as simulated with our prognostic gen-263

eral ocean circulation model, we find indications that:264

- The long-term trend of the barotropic BSO flow is wind driven. The reason be-265

ing that a precise reconstruction can be achieved by using hourly winds. Note that266

the effect of model boundary conditions on the BSO flow trend is apparently mi-267

nor because: (1) The models open boundary conditions are based on monthly mean268

values, and we found that shorter than daily frequencies are required to reconstruct269

the trend. (2) Barotropic waves protruding from the boundaries of the Nordic Seas270

are created by weather systems which cannot yet have reached the Nordic Seas.271

Given that BSO flow can be reconstructed using past data only, this suggests that272

there is a temporal fallacy in the argument that the models boundary conditions273

drive the BSO flow trend.274

- The BSO flow long term trend is pushed by wind patterns over the Nordic Seas,275

but the ”pull” hypothesis can not be totally excluded as weather systems over the276

Nordic Seas can move to the Barents Sea for example. And since they arrive in277
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the Barents Sea afterward, it is not impossible that their pattern in this area re-278

sembles that of the indexes we provide to the DL model.279

- It is possible to reconstruct the BSO flow, and its trend, using data from sea-ice280

free regions. We can therefore conclude that sea-ice has little or no influence on281

the BSO flow.282

Based on our results so far, we have identified that the trend observed from the BSO283

is most likely driven by a change in wind circulation over the Nordic Sea area. But the284

question remains, in terms of physical understanding, on how can we characterize this285

change. We continue to investigate this aspect by using Principal Component Analysis286

(Empirical Orthogonal Functions).287

4.2 Atmospheric Patterns288

We have shown that the long term trend at BSO is linked to winds. However, since289

the wind time series are statistically related we cannot draw ultimate cause-effect rela-290

tionships on what are the specific changes in the atmospheric circulation that could ex-291

plain such trends. Thus subsequent analysis refer to model simulations which are mo-292

tivated by foregoing studies.293

Based on work of R. B. Ingvaldsen et al. (2004) (their Figure 12) we know that there294

are two basic patterns driving BSO flow variability, one for each direction of the flow.295

In the case of an inflow from the Nordic Seas towards the Barents Sea, the flow is as-296

sociated with a low pressure system centered on the Nordic Seas, which creates a cyclonic297

circulation in the Nordic Seas. In the case of an outflow from the Barents Sea, towards298

the Nordic Seas, the flow is associated with a high pressure system centered north of Green-299

land, which extends in the Nordic Seas. The prominent overall trend of increased BSO300

flow (Figure 2) can be decomposed in two sub-trends. The trend of inflows, and the trend301

of outflows. The trend of the total BSO flow is 1.5 104 m3 s−1 per year, but the trend302

of inflows is actually 1.4 104 m3 s−1 per year, whereas the trend of outflow is 7.38 104303

m3 s−1 per year.304

In the present article, we are only considering the net flow through BSO, and BSO is de-305

fined as a section going from Svalbard to the Norwegian continental coast. However, the306

BSO flow is not homogenous along this section. It is mostly inflowing along the Norwe-307

gian coast, and can be outflowing South of the Island of Bjørnøya, which is also the deep-308

est part of the section. If the trend of outflows can be related with the trend of the out-309

flowing part of the BSO flow, and the trend of inflows can be related with that of the310

inflowing part of the BSO flow, then one can deduce that the outflows should become311

weaker and/or less frequent. A closer look at the trends in currents and transports shows312

that this is actually what happens in our numerical simulations (Figure 3c and 3d). This313

suggests that the wind pattern associated with outflows has a trend making it weaker,314

as the trend of outflow strength is more than 5 times higher. Of course, since outflows315

are rare in comparison with inflows, the total BSO flow trend is not just simply the al-316

gebraic sum of the two trends.317

In our model experiments, we follow a similar approach as outlined by Muilwijk et al.318

(2019). We design a perturbation experiment in which the wind field of the forcing dataset319

of the long term simulation of Hordoir et al. (2022) is modified by adding constant wind320

fields. These wind fields correspond to the major atmospheric modes (North Atlantic321

Oscillation, East Atlantic Pattern, Arctic Oscillation and Arctic Dipole). Thus, our pat-322

tern differs from Muilwijk et al. (2019) who modified his forcing by an anomaly corre-323

sponding with a very strong or very weak sea level pressure (SLP) at the location of the324

low pressure system located in the Greenland Sea. Our analysis is motivated by earlier325

suggestions on the potential impact of changes in the leading atmospheric modes (Polyakov326

et al., 2023; R. B. Ingvaldsen et al., 2004)).327
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For this purpose, we perform Principal Component Analyses of sea level pressure328

(SLP) anomalies for the following regions: (1) the North Atlantic from 20◦-80◦N and 90◦W-329

40◦E and (2) the Arctic ranging from 20◦-80◦N, 180◦W-180◦E. All calculations are based330

on monthly mean SLP anomalies where the mean seasonal cycle was removed. The at-331

mospheric data consist of the ERA5 reanalysis that was also used to force the model.332

Note that the data sets were not de-trended. The corresponding wind fields were obtained333

by regressing the indices on the respective wind fields over the Northern Hemisphere.334

We considered two leading modes for both regions. For the first region, compris-335

ing the North Atlantic, we perform separated principal component analyses for the time336

periods 1979-1988 and 2013-2022. The rationale of this approach is to explore the im-337

pact of known changes in the centers of actions in the leading modes over time (Tao et338

al., 2023; Hilmer & Jung, 2000; Jung et al., 2003; Barnston & Livezey, 1987). The trends339

in the intensity of these leading modes over time are rather weak. For the Arctic, how-340

ever, the Arctic Dipole has a tendency toward higher values over time. Also, this mode341

has been suggested to strongly impact the BSO flow in the empirical study by Polyakov342

et al. (2023). We thus performed the principal component analyses over the entire time343

period that is based on the ERA5 atmospheric conditions.344

All respective wind anomalies (referring to the positive and negative EOF-patterns)345

were added to the regular wind forcing of the year 2000 (which is in approx. the mid-346

dle of the simulated time period). Note that the original winds were rather weak to mod-347

erate when starting the simulations with modified forcing.348

4.3 Leading modes in the North Atlantic: the North Atlantic Oscilla-349

tion and East Atlantic Pattern350

For the North Atlantic region, we explore how the known changes in the position351

of the centers of action in the leading modes of atmospheric variability might impact the352

simulated BSO flow. We compare the two time periods 1979-1988 and 2013-2022 for the353

first two leading modes, the North Atlantic Oscillation or NAO, and the East Atlantic354

Pattern-EA (Hurrell, 1995). Note that shifts in the NAO can result in related shifts in355

the EA pattern (Mellado-Cano et al., 2019). The time periods refer to the first and last356

decade during which we applied consistently ERA5 atmospheric forcing. For the NAO357

we compare the impact of positive and negative anomalies during the two periods be-358

cause the response could be non-symmetrical. For the EA we consider only the positive359

phases because it knowingly developed a preference for more positive values during the360

recent decades (Mikhailova & Yurovsky, 2016).361

Although there is a clear change in the location of the low pressure system centered362

on the Nordic Seas between the two time periods, especially if one considers the NAO,363

this change does not imply the expected increase at the BSO flow (Figure 6). On the364

contrary, the changes of wind strength between the two time periods, lowers the BSO365

flow, as the wind vorticity on the area shifts (Figure 6 a). This change is consistent with366

the changes of currents, which exhibit a weaker Atlantic Current (Figure 3). The other367

sensitivity experiments which apply the wind velocity changes related with the differ-368

ence in EA produce almost no visible change in BSO flow. If the experiment is done based369

on the negative NAO phase, then the BSO flow does increase by about 2%, which is far370

below the 20% of increase represented by our Nemo-NAA10km simulation. Our results371

differ from the ones conducted by (Muilwijk et al., 2019) as the ocean response in our372

experiments is weaker, but the perturbation we introduced is much weaker as it corre-373

sponds to observed trends in leading modes over the North Atlantic. The pattern of change374

of NAO over the North Atlantic Ocean exhibits a trend towards a weaker low pressure375

system over the North Atlantic (Figure 6), which suggests that the cyclonic wind cir-376

culation becomes slightly weaker, hence creating a weaker cyclonic ocean circulation in377

the Nordic Seas. Based on the experiments made by (Muilwijk et al., 2019), one should378
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Figure 6. a) First EOF of the SLP (NAO) over the North Atlantic Ocean, for the time peri-

ods 1979-1988 and 2013-2022 b)Sensitivity of the BSO flow for year 2000 to an increased EOF1

pattern for the 1979-1988 and 2013-2022 time periods. Black curves are the reference experiment,

blue curves correspond to the time period 1979-1988, red curves to the time period 2013-2022

instead. For each subfigure, the hourly signal is displayed above (BSO flow), and a low passed

signal is displayed below (BSO flow Low.) c) Second EOF of the SLP (EA) over the North At-

lantic Ocean, for the time periods 1979-1988 and 2013-2022 d) Sensitivity to an increased EOF2

pattern
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expect the BSO flux to be a bit weaker for the period 2013-2022 compared with the pe-379

riod 1979-1988, which is exactly what our experiment shows. Therefore, we conclude that380

the trend of BSO flux can not be explained by the changes of principal atmospheric modes381

over the North Atlantic.382

4.4 Leading modes over the Arctic: the Arctic Oscillation and Arctic383

Dipole384

The Arctic Oscillation (AO hereafter) and the Arctic Dipole (AD hereafter) cor-385

respond to the two leading modes when considering the sea level pressure anomalies north386

of 70◦N (Thompson & Wallace, 1998; Deser, 2000; Watanabe et al., 2006; Wu et al., 2006).387

In contrast to the NAO, the AO and AD are associated with outflows at BSO. We ex-388

plore the first two leading modes while we do not consider a shift in the pattern but per-389

formed, instead, the EOF analysis for the entire period 1979-2022 (because the AO pat-390

tern is typically more stable than the NAO). We explore the impact of the related pos-391

itive and negative anomalies in the winds. Such an approach allows us to estimate a po-392

tential impact of a trend or a phase shift in the leading modes. A respective phase shift393

has been reported for the AD (Heo et al., 2021).394

In contrast to the experiments performed with the NAO and EA, the simulated BSO395

flow is extremely sensitive to the AD as suggested already by Polyakov et al. (2023); R. B. In-396

gvaldsen et al. (2004). Polyakov et al. (2023) related changes in the ORAS5 ocean re-397

analysis data to the trend in one of the leading atmospheric modes over the Arctic Ocean,398

the Arctic Dipole (AD). By time series analysis Polyakov et al. (2023) attribute the BSO399

flow trend to the increasing strength of the AD. Our model simulations could, however,400

not confirm this empirically drawn relationship. In our work, we perform a sensitivity401

experiment, and its result shows clearly an opposing response. Inline, the Arctic Dipole402

is likely to create Northerly winds in the Barents Sea, and therefore, as simulated, a west-403

ward transport South of Svalbard. This transport goes in the opposite direction as that404

of the BSO flow, if the later is defined as positive when entering the Barents Sea. The405

conclusions from Polyakov et al. (2023) also contradict the correlation between AD and406

BSO, from their very own dataset: based on the AD data from their Figure 2, and the407

BSO flow data from their Figure 3, one finds a clear negative correlation between the408

two time series, especially for the recent years. For the time period 2005-2021, the cor-409

relation between the two time series is -0.38, and for the time period 2011-2021 it reaches410

-0.53. These results are therefore in agreement with our findings (Figure 8).411

On the other hand, our results are inline with R. B. Ingvaldsen et al. (2004), as adding412

a positive AD to the mean SLP actually exhibits an SLP pattern that looks similar to413

their Fig12b. However, according to our model experiments, the trend in AD (Figure414

8) can not explain the BSO flow trend as the respective changes have an opposing ef-415

fect on the BSO flow than the trend obtained when applying the full forcing (Figure 8).416

Note that a control experiment considered only AD-related winds north of 75◦N. The417

result is very similar to using the full fields over the Northern Hemisphere, although the418

sensitivity of the BSO flow is weaker.419

When applying the first leading mode, i.e. the AO pattern, the model response appears420

weaker compared with the response to the AD pattern. However, a weakening AO mode421

does well produce a significant increase in BSO flow as the wind patterns related with422

a strong positive AO, are associated with Easterlies (Figure 7a) in the BSO, and there-423

fore with an outflow pattern. This finding seems consistent with the BSO-trend, but the424

effect is much too weak - especially since the AO only exhibits a very weak trend over425

the considered time period. The simulated increase of the BSO flow when using the full426

atmospheric forcing is more than 20%, whereas a positive AO vs a negative AO explains427

only 8% while the observed AO trend is much weaker than considering the difference be-428

tween positive and negative AO phases. Therefore, we conclude that the BSO flux trend429

can not be explained either by the changes of the leading atmospheric modes over the430

Arctic.431
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Figure 7. a) Arctic Oscillation SLP pattern (AO-), which corresponds to its first EOF b)

BSO flow for year 2000, black is the reference simulation, blue is the simulation corresponding

with the AO negative anomaly (AO- run hereafter), red is the simulation corresponding with the

AO positive anomaly (AO+ run hereafter). The reference, AO-, AO+ mean BSO fluxes are 2.8

Sv, 2.92 Sv and 2.69 Sv respectively. c) Arctic Dipole, which corresponds to EOF2 of the SLP

above 70N, mean value of the period 1979-2022. d) BSO flow for year 2000, black is the reference

forcing, blue is the simulation corresponding with the AD negative anomaly (AD- run hereafter),

red is the simulation corresponding with the AD positive anomaly (AD+ hereafter). The refer-

ence, AD-, AD+ mean BSO fluxes are 2.8 Sv, 3.22 Sv and 2.41 Sv respectively.
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Figure 8. Principal components of the AO and the AD (Black plain line, dashed line for

the linear trend) and the BSO flow (Red). Annual mean values for the period 1979-2021. The

principal components and the BSO flow are standardized by subtracting their mean values, and

dividing by their standard deviation. At a monthly timescale, the relation between the two Arctic

leading modes and the BSO flow appears obvious. The correlation between the BSO flow and

the AD is -0.75 whereas the correlation with the AO is only -0.24. At an annual timescale, the

correlation between the BSO flow and the AD is -0.42, but that with the AO becomes -0.55. The

trend in AD and AO, are 0.09 and -0.15 for the time period 1979-2021 respectively. Based on an

EOF value of 500 Pa, this corresponds to a difference of 45 and 75 Pa, respectively.
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5 Discussion and Conclusion432

The results presented in Figure 2 show that there is a positive trend of flow at BSO,433

from the Nordic Seas towards the Barents Sea. At the scale of the Nordic Sea basins,434

this trend is compensated by other flow trends at other gates. Therefore, the causality435

link can not be established directly: the BSO flow trend could be very well driven from436

further South and pushed for example by a stronger flow at Faroe-Shetland strait, it-437

self resulting from a stronger meridional transport. Through the utilization of a DL model,438

that takes for input wind time series resulting from a spatial average done over specific439

areas of the Nordic Seas, we can establish a link between the trend of the BSO flow and440

atmospheric wind forcing over the Nordic Seas area. We find that the BSO flow and its441

trend can be reconstructed only if the Deep Learning pipeline is fed by high frequency442

wind data (one to three hours sampling period) over a period of 3 weeks prior to the time443

of the reconstruction. This link proves that within the wind time series extracted from444

the Nordic Seas forcing, the source of the BSO flow trend is present. And we provide a445

reasoning that shows that the BSO flow trend comes most likely only from the wind forc-446

ing over this area, which excludes another causality. In addition, sensitivity tests based447

on the DL model confirm that the BSO flow is sensitive to the meridional wind and Sver-448

drup transport in the Nordic Seas basin, which means that a higher vorticity in the Nordic449

Seas increases the BSO flow. The limitation of our DL approach is that, per se, it does450

not provide an understanding of the underlying physical processes that drive the BSO451

flow trend. Rather, it is a mean to explore non-linear statistical links and as such it pro-452

vided information on potential drivers and respective timescales.453

In order to identify the physical processes behind the statistical links identified by454

the DL, we performed idealized experiments with the prognostic general ocean circula-455

tion model that explored the impact of wind changes that are related to known changes456

in the leading atmospheric modes over the North Atlantic and the Arctic. Our results457

indicate that changes in the NAO and EA-pattern (i.e. the two leading modes of sea level458

pressure anomalies over the North Atlantic) from 1979-1988 to 2013-2022 have a very459

weak impact on the simulated BSO flow as even the sign is not consistent with the sim-460

ulated trend of the full simulation. The impact of NAO patterns in our simulation is dif-461

ficult to compare with the results of Muilwijk et al. (2019), who used strong or weak NAO462

anomalies, whereas we used real NAO trends. But our findings confirm the work of Smedsrud463

et al. (2013); Heukamp et al. (2023); Polyakov et al. (2023), that show a weak NAO in-464

fluence on the BSO flow. For the Arctic Ocean, we focused on changes over time and did465

not refer to pattern changes. This approach was triggered by foregoing studies that high-466

lighted the potential importance of the AD and its changes over time. We found that467

both, pronounced AO and AD positive phases, can lower the BSO flow. As suggested468

earlier by Polyakov et al. (2023), the AD had a relatively pronounced impact on the BSO469

flow, but the known trend in the AD goes into the wrong direction. Moreover, the re-470

lation between AD and BSO flow is anti-correlated both in the present work and in Polyakov471

et al. (2023). We therefore conclude that the trend in AD can not explain the trend in472

BSO flow.473

The trend in the AO, in contrast, would go into the right direction and the ongoing weak-474

ening trend of AO can lead to a higher BSO flow. The latter can be explained by the475

fact that a weaker AO would lead to weaker Easterly winds in the Northern part of BSO.476

A weaker AO would lead to a weaker outflow, consistent with our model results show-477

ing that the BSO positive trend is mostly due to a smaller outflow from the Barents Sea478

towards the Nordic Seas (Figure 3). This implies that the change in the total flow is more479

related to the decreasing outflow than the change in inflow. That said, the respective480

observed trend in the AO is too weak to have a strong impact. For illustration, consid-481

ering a shift from an AO plus to AO negative phase would refer to an approx 8% change482

in the BSO flow while the observed AO trend is rather minor. The increase of the sim-483

ulated BSO flow represented by Nemo-NAA10km with full atmospheric forcing is more484

than 20%.485
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We conclude that it is likely that the atmospheric patterns that lead to the sim-486

ulated trend in BSO flow when applying the full atmospheric forcing, are relatively com-487

plex and do not project directly on the leading modes of atmospheric variability over the488

North Atlantic and the Arctic. Further experiments, out of scope with the present manuscript,489

show that the BSO flow trend can not be explained by a linear trend of atmospheric vari-490

ability. Using an atmospheric forcing from which the linear trend of wind velocity and491

atmospheric pressure has been removed, produces a BSO flow trend which value is 97%492

of that computed with the normal atmospheric forcing, showing that the BSO flow trend493

is driven by a non-linear process.494

Our speculations are inline with the findings of Muilwijk et al. (2019), as we relate anoma-495

lous BSO flows to a very specific atmospheric pattern identified by using climate response496

functions, and Heukamp et al. (2023), who refer to the importance of the local cyclonic497

activity. Also, (potentially complex) interactions in the leading atmospheric modes as498

well as the impact of sea ice decline are not captured in the presented study (see for ex-499

ample Koenigk et al. (2009) for potential feedback mechanisms in coupled simulations).500

Note, however, that the DL approach could reconstruct the simulated trend in the BSO501

flow to a large degree when considering ice free areas only.502

In summary, we failed to identify the underlying pattern ”hidden” in the wind data that503

can explain the BSO flow trend. Utilizing a DL model, however, ensures that what leads504

to the simulated BSO flow trend is related to some signal in the wind data time series505

provided to the DL model. We can also confirm that wind over the Nordic Seas can ex-506

plain this trend, since it is the only geographical source of the time series. It also gives507

us a hint to search more towards high frequency processes. Therefore, some additional508

research is needed.509
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Appendix A Deep Learning Model530

As outlined in section 3, to address the prediction of temporal BSO flow variation,531

we developed a multivariate causal convolutional neural network (Oord et al., 2016; Bai532

et al., 2018). We choose a rather complex DL architecture since we expected large non-533
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linearities and additionally wanted to cover time dependencies. Other common and sim-534

pler time series neural network architectures that cover time dependencies, such as Long535

short-term memory network (LSTM) and Multilayer Perceptrons (MLP), were tested536

for our purpose (Granata & Di Nunno, 2023; Yi et al., 2024; Hochreiter & Schmidhu-537

ber, 1997; K. Chen et al., 2021; Che et al., 2018). However, in our benchmarking, the538

causal convolutional network is selected because of its smaller generalization errors (shown539

in Figure A2). The selected model architecture facilitates efficient feature learning from540

a sequence of input variables, unlike the LSTM models that require more measures to541

be taken into account to reduce overfitting (Kinoyama et al., 2021).542

Please note that, in contrast to basic machine learning research the focus here is not on543

developing deep learning architectures (such as outcompeting other approaches) but, rather,544

to apply a tested framework to obtain scientific hypotheses which are then fed into fur-545

ther analysis and a first-principle model for testing. The causal term in convolutional546

layers refers to using past data to reconstruct each moment, without any information547

leakage from the future to the past. However, due to the inherent directed acyclic graph548

(DAG) structure of the deep neural networks, the DL model can propose a causal infer-549

ence between input variables and the output (Cui & Athey, 2022; Wang et al., 2022; Berrevoets550

et al., 2023). The physical causality between the wind indexes and the BSO flow arises551

based on expert knowledge of physics that indicates the relation between them is cause552

and effect. It should be noted that there are no effect variables of the BSO flow inside553

the input variables. On the other hand, by reducing the generalization error, it can be554

deduced that the model suggests a causal inference for the BSO flow, which can enable555

further investigation into the variability of BSO flow under the influence of wind indexes.556

The model comprises a series of causal convolution layers for extracting features557

from lags of inputs within a period of historical data (receptive field of RF ). This is fol-558

lowed by a stack of dense layers designed to perform regression on these features to pre-559

dict the hourly BSO flow. During the training process, the learnable parameters, includ-560

ing weights and biases, of layers, such as convolution and dense layers, are tuned to pre-561

dict the BSO flow using features extracted from the lags of wind data within an RF .562

Increasing RF size allows for the inclusion of information from a wider range of563

past wind data and captures long-term dependencies. Figure A1 illustrates the archi-564

tecture of the DL model, comprising k residual blocks of causal convolutions followed565

by p blocks of fully connected layers. Therefore, the length of RF is determined as fol-566

lows:567

RF = (fs− 1)(2k − 1) + 1 (A1)

where fs is the filter size of the convolutional layers and is set to 2. Adam optimizer is568

used for gradient descent learning. Hyperparameters were tuned through grid search, which569

as a result, our DL model architecture includes 128 filters in each convolutional layer,570

64 nodes in the fully connected layers, a dropout probability of 0.25, and two blocks of571

fully connected layers (see Figure A1). The number of residual blocks of causal convo-572

lutions k (which reflects the length of the RF according to Equation A4) was selected573

based on the model’s ability to reconstruct the BSO long-term trend. Hence, the model574

was optimized for each k individually (shown in Figure 5). For this purpose, trend ra-575

tio TR is defined as the ratio of the predicted trend to the actual trend. As a result, the576

number of residual blocks was set to 9, which indicates that 3 weeks of past data are used577

to predict the BSO flow. The dataset was divided into training (80%, from the first of578

1975 to 2011), validation (15%, from 2012 to 2019), and testing (5%, the last two years)579

sets. For stable training, input variables are normalized to a range of 0 to 1. Target val-580

ues are kept in their original scale, consequently, a learning rate of 4 was determined from581

the grid search. The training process was monitored using the validation set to avoid over-582

training with a patience value of 10. The model is trained in epochs of 136.583

Therefore, the input variables of size c are sequentially fed into k residual blocks,584

each consisting of a dilated causal convolution, batch normalization, and Rectified Lin-585
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Figure A1. Diagram representing the DL model architecture with k residual blocks of causal

convolutions and p blocks of fully connected layers.

ear Unit (ReLU) activation layer. The residual block is a non-linear module where the586

output is formed by adding the input, which is able to address the gradient vanishing587

problem and improve learning efficiency in deep learning architectures (He et al., 2016).588

Incorporating dilated causal convolution layers into the model facilitates an increase in589

the receptive field size RF without significantly raising the number of learnable param-590

eters or the computational cost (Oord et al., 2016). The dilation factor for each block591

is set to d = 2(k−1). Therefore, the output of the k-th residual block (k > 1) for the592

i-th filter (i = 1, 2, ..., nf) at time step t is:593

ẑk[i, t] = γk[i] ·
∑fs

q=1

∑fs
j=1 wk[q, j, i] · zk−1[j, t− d(q − 1)] + bk[i]− µk[i]√

σ2
k[i] + ϵ

+ βk[i]

zk[i, t] = ReLU (ẑk[i, t]) + zk−1[i, t]

(A2)

where zk and zk−1 are the outputs and inputs of the module. The indices q and j in the594

summations correspond to the filter size and input feature size, respectively. The first595

residual block includes a skip causal convolution layer with a filter size of one to main-596

tain dimensional consistency. Therefore, for k = 1:597

ẑ1[i, t] = γ1[i] ·
∑fs

q=1

∑c
j=1 w1[q, j, i] · x[j, t− d(q − 1)] + b1[i]− µ1[i]√

σ2
1 [i] + ϵ

+ β1[i]

z1[i, t] = ReLU (ẑ1[i, t]) +

c∑
j=1

w0[1, j, i] · x[j, t] + b0[i]

(A3)

where weights wk and bias bk are trainable parameters of the convolution layers with the598

filter size fs and the number of filters nf . The convolution outputs are normalized us-599

ing batch normalization with learnable scale parameters γ and shift parameters β. The600

mean and standard deviation of the convolution layer outputs are denoted as µ and σ,601

respectively. ReLU activation function is applied after the batch normalization layer to602

introduce non-linearity, enabling the model to capture intricate data features and pat-603

terns (Sharma et al., 2017). The ReLU function outputs zero for negative input values604

and retains positive ones unchanged.605

The fully connected layers integrate the features extracted by the convolutional blocks606

and transform them into the final prediction. Let x ∈ Rm be the input to the fully con-607

nected layer and y ∈ Rn be the output of the layer, therefore:608

y(t) = wx(t) + b (A4)
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Table A1. Summary of the DL model. Output shape indicates the dimension of layer output

in batches (B), time steps (T), and channels (C).

Layer Name Layer Type Output Shape Learnable Parameters

Sequential Inputs Input 1(B) × 1(T) x 27(C) -

k = 1 Dilated Causal Conv 01 Conv1D 1(B) ×1(T )× 128(C) 2 ×27× 128(w) + 128(b)

BatchNorm 01 Batch Normalization 1(B) ×1(T )× 128(C) 128 (Offset) + 128 (Scale)

ReLU 01 ReLU -

Skip Conv Conv1D 1(B) ×1(T )× 128(C) 2 ×27× 128(w) + 128(b)

Add 01 Addition 1(B) ×1(T )× 128(C) -

k = 2,...,9 Dilated Causal Conv (k) Conv1D 1(B) ×1(T )× 128(C) 2 ×128× 128(w) + 128(b)

BatchNorm (k) Batch Normalization 1(B) ×1(T )× 128(C) 128 (Offset) + 128 (Scale)

ReLU (k) ReLU

Add (k) Addition 1(B) ×1(T )× 128(C) -

p = 1 Dense 01 Fully Connected 1(B) ×1(T )× 64(C) 64 ×128(w) + 64(b)

LayerNorm 01 Layer Normalization 1(B) ×1(T )× 64(C) 64 (Offset) + 64 (Scale)

Dropout 01 Dropout 1(B) ×1(T )× 64(C) -

p = 2 Dense 01 Fully Connected 1(B) ×1(T )× 64(C) 64 ×64(w) + 64(b)

LayerNorm 02 Layer Normalization 1(B) ×1(T )× 64(C) 64 (Offset) + 64 (Scale)

Dropout 02 Dropout 1(B) ×1(T )× 64(C) -

Output Fully Connected 1(B) ×1(T )× 1(C) 1 ×64(w) + 64(b)

Number of layers: 46

Total learnable parameters: 288.8k

Optimizer: Adam

where w ∈ Rn×m and b ∈ Rn are learnable weight and bias of the fully connected layer,609

respectively. We used layer normalization after the fully connected layers to stabilize train-610

ing and a dropout layer to improve model generalization. Table A1 presents a list of the611

layers used in the model in detail. The loss function is the half-mean-squared-error of612

the predicted flow for each time step:613

Loss =
1

2N

N∑
j

(Tj − yj)
2 (A5)

where N is the length of the sequence in each sample. In the training process, the time614

series was segmented into samples of two years, with a one-month overlap between con-615

secutive samples. This interval is sufficiently long to have a smooth and stable training616

on samples, yet not so extended as to reflect the BSO long-term trend. We used a mini-617

batch size of 6, which results in four iterations per epoch. The evolution of the loss func-618

tion is demonstrated in Figure A2b. The target values are unscaled, with an order of mag-619

nitude of 1e6 in this version of the DL model. The learning rate and L2 regularization620

were optimized via grid search. No overshooting in training loss was observed during the621

initial iterations, suggesting the learning rate is appropriately set. The gradual decrease622

in loss throughout the iterations further indicates stable convergence.623

Figure A2a shows the predicted flow for the training set in blue and the (valida-624

tion and) test set in red compared with the target BSO flow obtained from the Nemo-625
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NAA10km model. Performance of the DL model is presented in Figure A2c and d through626

a scatter plot of target vs. predicted BSO flow. As a result, the model predicts the BSO627

flow with an RMSE of 5.03e5 Sv and 6.52e5 Sv for the training and test sets, respectively.628

The R2 values of 0.91 for the training set and 0.81 for the test set indicate that the model629

was generalized appropriately. However, the model has not yet excelled in capturing ex-630

treme events, and further considerations are required to improve the DL model for both631

extreme low and high events. We repeated the training of the DL model multiple times632

and observed consistent performance in both the training and test sets, indicating that633

the model is stable and has been sufficiently trained. Henceforth, the entire dataset is634

utilized to train the DL model to accurately capture the BSO long-term trend for use635

in subsequent experiments.636

Figure A2. DL Model Training Results. a) Comparison of target and predicted BSO flow

on the training and test sets for an RF of 3 weeks. b) Training and validation loss as a function

of training epochs. Panels (c) and (d) demonstrate density scatter plots showing target vs. pre-

dicted flow for training and testing sets, respectively.

A1 Explaining DL Model Predictions637

The field of Explaining AI is broad, as it simultaneously needs to address differ-638

ent types of machine learning models and a wide range of interpretability requirements639

(Letzgus et al., 2022). In this study, we conducted a series of experiments, including re-640

training the model by disturbing input features or using combinations of input features,641

and input perturbation analysis to identify the sensitivity of the model to input variables.642

Figure A3a shows the BSO flow prediction using the DL model with all 27 wind643

indexes. The model successfully reconstructs the flow, achieving an R2 value of 0.97 and644

a TR of 0.92. However, the predicted flow contains a bias (Figure A3c), which can be645

attributed to the model’s capacity to accurately predict extreme events. In addition, Fig-646

ure A3b presents the annual mean of both actual and predicted flows. To demonstrate647

the outcomes of the model, we also present results obtained through training with dif-648

ferent subsets of wind indexes. By excluding wind indexes from ”500m isobath” and ”All649

Nordic Sea” boxes, the DL model reconstructs the flux with an R2 of 0.96 and a TR of650

0.93, which is almost the same result as using all wind indexes. Training the DL model651
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exclusively with wind indexes from the ”500m isobath” and ”BSO boxes” yielded an R2
652

of 0.94 and a TR of 0.80. The long-term trend of the latest model can be improved by653

including wind indexes of Fram Strait into the input variables, which results in R2 of 0.95654

and TR of 0.91.655

Figure A3. a) Reconstructed BSO flow using all wind components and RF of 3 weeks. The

black line represents the long-term trend of the actual BSO flow, while the red dashed line corre-

sponds to the predicted BSO flow. The DL model successfully reconstructed the long-term trend

with a TR value of 0.92. b) annual mean flux of actual and predicted time series. c) histogram of

differences between actual and predicted BSO flux.

Training the DL model only with wind indexes from BSO gates resulted in an R2
656

of 0.91 and a TR of 0.78. This shows that the model reconstructs a substantial portion657

of the long-term trend with solely wind data from BSO gates. However, training the DL658

model with all available indexes except those from BSO gates can still result in an R2
659

of 0.96 and a TR of 0.90, which demonstrates that information for capturing the long-660

term trend can also be obtained from other locations than BSO gates. Therefore, fur-661

ther investigation into features using feature selection methods may not provide addi-662

tional insights into the drivers of the BSO flow trend, as the RF of 3 weeks is sufficient663

to observe events across all locations and the model is able to establish relationships with664

the remaining features. Hence, using all 27 features is more suitable for training a more665

stable model. In addition, We want to emphasize at this point that providing more fea-666

tures adds information for the DL model to provide a better representation of the BSO667

flow, but that it is at this stage impossible to establish a connection with the underly-668

ing physical processes that drive the BSO flow trend.669

Incorporating wind indexes from different locations enables us to implicitly intro-670

duce spatial variability in wind patterns into the DL model, thereby enhancing the model’s671

robustness. To assess the robustness of the DL model in the presence of noisy data, we672

retrained the DL model by adding random Gaussian noise to all inputs with a noise level673

of 10 percent of each input’s standard deviation. The results showed almost consistent674

performance in reconstructing the flow. This observation suggests that the model can675

find the solution within noisy data by establishing relations between the lags and loca-676
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tions of the wind indexes. In another experiment, we disrupted the frequency dependen-677

cies among input variables by performing a fast Fourier transform (FFT) on the wind678

indexes and then combining the components with random phases. Training the model679

with this artificially modified wind data demonstrated that the model was unable to re-680

construct the flow without the true frequency dependencies among the input variables.681

The causal relationship between wind patterns and the BSO trend can be inves-682

tigated by perturbing the input wind data and observing the output of the trained mod-683

els. Due to our interest in the long-term trend of the BSO flow, a trend perturbation was684

applied to input variables by scaling the long-term trend of each variable by α. The per-685

turbed input variables are determined by adding a trend of α.t/(46years), where t is time686

with the reference epoch of 1975.0 and the factor α ranges from -0.05 to 0.05 in incre-687

ments of 0.01.688

Figure A4 presents the results of trend perturbation, demonstrating how changes689

in the long-term trend of each input variable (for different regions in the study area) im-690

pact the TR of the predicted BSO long-term trend. This figure shows strong positive cor-691

relations in the DL model, indicating that increasing long-term trends of the BSO gate692

wind stress and northward wind stress in ”500m isobath” correspond to increased long-693

term trends in BSO flow predictions. Furthermore, notable inverse correlations are ev-694

ident with the eastward wind stress in ”All Nordic Sea” and the northward wind stress695

in Fram Strait and Iceland-Faroe gate. Generally, the perturbation analysis indicates that696

an increase in the long-term trend of northward wind stresses in the eastern and south-697

eastern regions of the study area can result in an upsurge in the BSO trend. Conversely,698

an increasing trend in the Fram Strait wind indexes can lead to a reduction in the BSO699

trend. It is important to note that the introduced trends in the input wind indexes are700

of a small magnitude, so that applying an α of 0.01 is equivalent to 1% of the wind range.701

Figure A4. Trend perturbation test on the trained DL model with actual wind data.
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